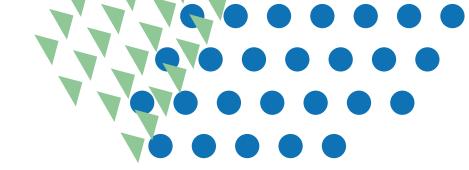
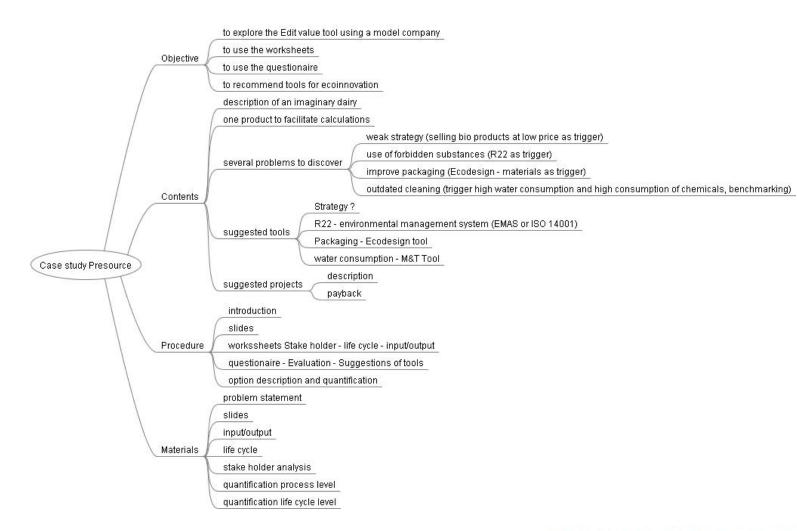


Good Morning!



Case Study Dairy


For training in Prague

PRES URCE

PRES URCE The dairy Resmilk

- Is a cooperative of dairy farmers located in the northern part of Southland
- It employes 100 people
- Works 350 days per year
- Processes milk to drinking milk
- Has a waste water treatment plant
- Has no environmental management system

PRES URCE The management team

PRES URCE Awards

 Was awarded a "cheese oskar" on the international cheese exhibition the last three years

PRES URCE Happy cows

PRES URCE Organisational units

- Management
- Administration
- Consulting farmers
- Production
- Logistics
- Utilities (boiler, chiller)
- Waste management

PRES URCE Products

	Product	Annual quantity	unit
Milk		68.000	t
	conventional	83,3	%
	bio	11,5	%
	industrial	5,2	%

PRES URCE Inputs

1	Water		175.000	m³
	From	well	100.000	m³
	From	city	74.568	m³
	Waste water		175.000	m³
2	Raw milk		70.000	t
3	Film for milk poaches		400	t
4	Crates		4	t

PRES URCE Inputs

1	Water		€/m³
	From well	0	
	From city	1	
	Waste water	1	€/m³
2	Raw milk	0,25	€/kg
3	Film	2	€/kg
4	Crates	2	€/kg

PRES URCE Hazardous materials

NrI	MSD S	Material	Annual quantity	unit
1	j	Cleaning agents	7.120	kg
2	j	Disinfectants	15.202	kg
3	j	lubricants	647	kg
4	j	Refrigerants (R22)	110	kg

PRES URCE Hazardous materials

Nr	Material		unit
1	Cleaning agents	2	€/kg
2	Disinfectants	5	€/kg
3	lubricants	2	€/kg
4	Refrigerant (R22)	12	€/kg

PRES URCE Waste

Waste Annual quantity [kg]
Industrial waste 10.000
Wood pallets employees
Packaging material 8.000

Disposal cost 350 €/t

PRES URCE Energy

1 Electricity	7	GWh	0,10	€/kWh
2 Natural gas	3.000.00	sm³	0,35	€/sm³
3 Diesel	90.000	1	1,3	€/I

PRES URCE Reception of milk

PRES URCE Metering

PRES URCE Pumps

PRES URCE Cooling

Cleaning

PRES URCE Storage

Cleaning

PRES URCE Pasteurization

PRES URCE Packaging material

PRES URCE

No recycled material used for bags and crates

PRES URCE Filling

PRES URCE Cleaning

PRES URCE Ready made product

PRES URCE Storage

PRES URCE Cooling - Compressor

PRES URCE R22 for refilling

PRES URCE CIP plant

PRES URCE Cleaning

- Water from final rinse is not recovered
- Manual control of rinsing

PRES URCE Benchmarking

	Energy consumption	Water consumption	Waste water
Production of market milk from 1 litre of received milk	0.07 - 0.2 kWh/l	0.6 – 1.8 1/1	0.8 - 1.7 1/1
Production of milk powder from 1 litre of received milk	0.3 - 0.4 kWh/l	0.8 – 1.7 1/1	0.8 – 1.5 1/1
Production of 1 kg of ice-cream	0.6 – 2.8 kWh/kg	4.0 - 5.0 1/kg	2.7 - 4.0 l/kg

Source: European BREF notes, "Food, drink and milk industry" (http://eippcb.jrc.ec.europa.eu/reference/)

PRES URCE Waste water treatment

PRES URCE Boiler

PRES URCE Steam manifold

PRES URCE Storage of cleaning chemicals

PRES URCE

PRES URCE Food waste

• 25% of products is not consumed!

FORMS

[Type text]

PRESOURCE; EDIT TOOL; Pilot training in Graz, 4th November 2013

TABLE 1: TOP 20 inputs - Quantification of process losses [based on annual data]

	Α	В	C	D	E	F	G	H	Remark
No	Input	Total amount [unit]	Total costs (EUR)	Product Output %	Process loss %	Proces s loss (EUR)	Pollution treatment costs (EUR)	Total loss (EUR)	(potential for conservation)
1	Raw milk	70.000 [t]	175.00.000	97,5	2,5	437.500	Ó	437,500	Check cleaning practises
2	City water	74.568 [m³]	74.568	0	100	74.568	74.568	149.136	Better controlling, automatisation
3	Well water	100.00 [m³]	0	0	100	0	100.000	100.000	Better controlling, automatisation
4	Packaging film	400 [t]	800.000	80	20	160.000	28.000	188.000	Check setup procedure
5	Cleaning agents	7.120 [kg]	14.240	0	100	14.240	ō	14.240	Check cleaning
6	Disinfectants	15.202 [kg]	76.000	0	100	76.000	Ó	76.000	Check cleaning
7	R22	110 [kg]	1320	0	100	1320	0	1320	Replacement legal requirement
8	Electricity	7 [GWh]	700.000	ō	100	700.000	0	700.000	Check cooling efficiency
9	Natural gas	3.000.000 [sm³] ¹	105.000	0	100	105.000	0	105.000	Check heat consumption
10									
11							1		

¹¹ sm² is 11 kWh

PRES URCE Use the EDIT VALUE Tool

3. MANAGEMENT SYSTEM

3.4 Are there significant environmental aspects? Is there an effectively operated
environmental management system in place?

NA	Absence	Preparation	Integration	Proaction	WEIGHT
ï	NoEMS	EMS is being prepared	EMS is implemented	EMS is effectively implemented (goals for	A
0		Die Const		different aspects are defined and progress is	В
Ē,	1			monitored)	C
	1	2	3	4	

Sa Int

Rem For evaluation of **WEIGHT**the following approach is recommended: A – very important should be given to an enterprise with significant environmental impacts; B – medium importance with medium importance of environmental impacts; C – low importance for low importance environmental impacts

APPLICATIONS

EMAS

EMAS easy

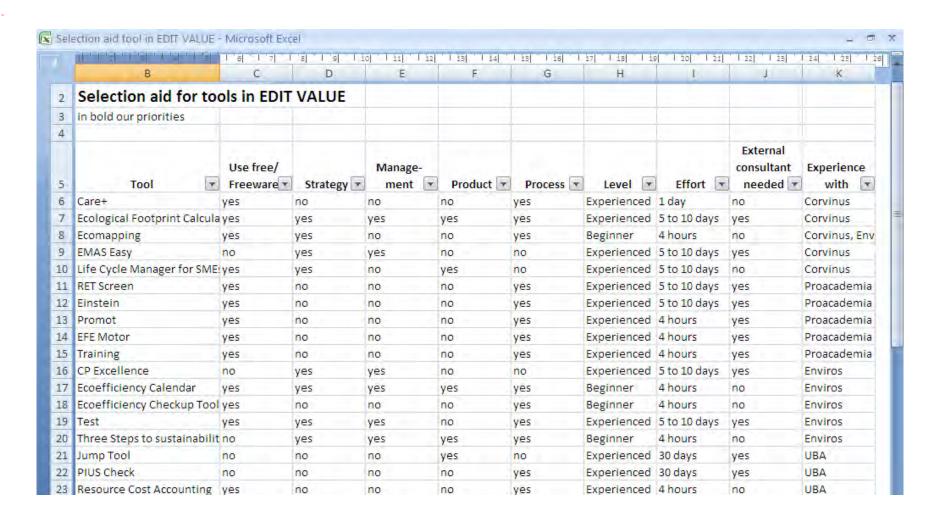
ISO 14001

5. PROCESSES

NA	Absence	Preparation	Integration	Proaction	WEIGHT			
0	No data available	Documentation of energy consumption, (some) energy reduction measures	regular energy audits (internal or external), documentation of energy consumption, benchmarking, good maintenance and training activities, action plan	Monitoring and controlling of energy efficiency data, energy action plan, energy team, energy report,	A B C			
	1	2	3	4				
Sour	1.2 (input/output tables)							
Rem								

PRES URCE

NA	Absence	Preparation	integration	Proaction	WEIGH
	control by	Partly electronic control built into	Data acquisition, logging, automatic	Data acquisition, logging,	A
0	operators	machines	control cycles	parameter optimisation.	В
Ů			1017	evaluation, training	C
	1	2	3	4	
Say	Interview			•	
Kes					
Ken	III.O. FIGURE				

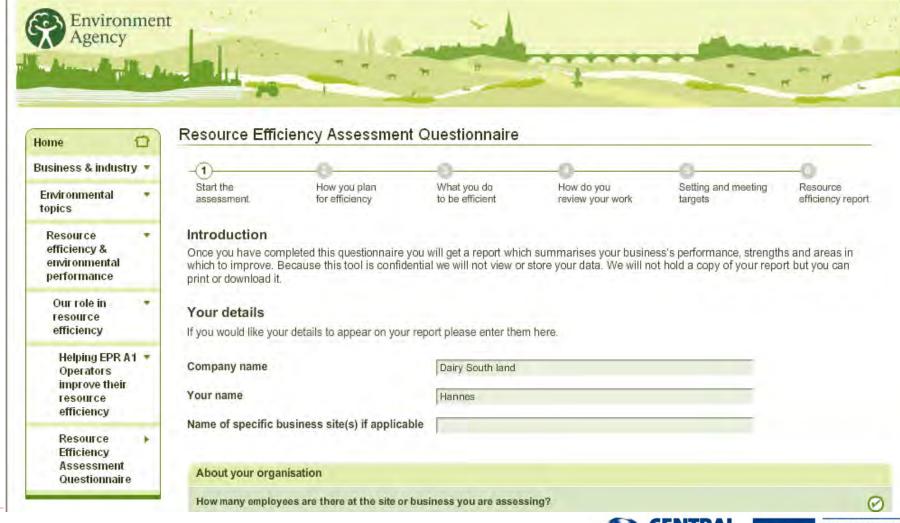

PRES URCE

NA:	Absence	Preparation	Integration	Proaction	WEIGH
0	No specific analysis or measures	Sources of water consumption known, some measures	A number of water efficiency measures implemented in process and utilities,	A system for managing water efficiency within important cost	A B
		implemented	regular water monitoring and controlling, separation of waste water, recycling of water	centres; all documented measures implemented for: - cooling - cleaning rinsing - transport Action plan including goals	c
	1	2	3.	4	
Secr	Interview Sector (ques Technologie Input/output	sused (question)			
Kan					
APP	LICATIONS	204-64			
Wat	er audit using che cooling cleaning	ecklists for:			

PRES URCE Selection tool

PRES URCE Suggested tool: Cleaner Production

READ Tool:


http://www.environment-agency.gov.uk/static/documents/Business/ Resource Efficiency Tool guide for EPRA1 customers.pdf

- PRESME Tool
 (estimated time to check about 4 hours)
- Ecoprofit
 (most effective in group, 5 to 15 working days)
- PIUS Check (with external consultant, 30 working days)

PRES URCE Example of application

PRES URCE

Touring need to put another move cost measures in prace in order to make progress.

Expenditure

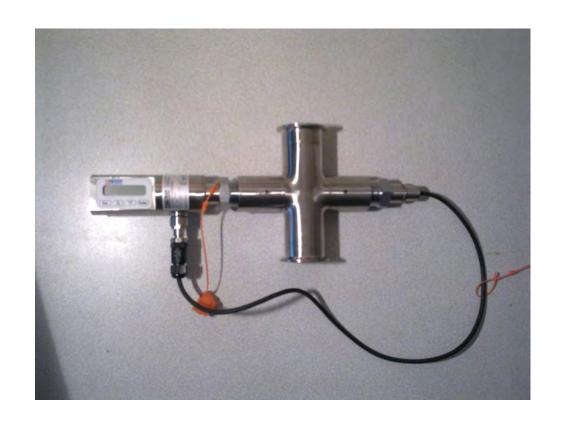
At present, waste costs around £100000 per annum. Your spending is constant.

Knowledge and understanding

- You understand some of your waste production well and have measured some of your waste production.
- Your measurement is moderately accurate.

Achieving targets and improving performance

- Senior managers periodically review waste use.
- There are targets across most of the operation to manage waste use.
- Targets are partly based on technical or historical benchmarks.
- Waste use targets are sometimes achieved.
- Apparently there is more opportunity to increase efficiency in this area.
- You may need to put short term/low cost measures in place in order to make progress.


PRES URCE Sector specific checklist (PRESME)

- Use continuous rather than batch processes to reduce the frequency of cleaning;
- Use automated cleaning-in-place (CIP) systems for cleaning to control and optimise water use;
- Install fixtures that restrict or control the flow of water for manual cleaning processes;
- Use high pressure rather than high volume for cleaning surfaces;
- Reuse relatively clean wastewaters (such as those from final rinses) for other cleaning steps or in non-critical applications;
- Recirculate water used in non-critical applications;
- Install meters on high-use equipment to monitor consumption;
- Pre-soak floors and equipment to loosen dirt before the final clean;
- Use compressed air instead of water where appropriate;
- Report and fix leaks promptly.

PRES URCE Probes for upgrading CIP plant

PRES URCE Proposal for upgrade of CIP plant

- 4 probes at 10.000 Euros
- 1 additional tank 15.000 Euros
- Pipes etc. 15.000 Euros
- Control unit 15.000 Euros
- Project costs, civil works, installation, startup
 65.000 Euros

PRES URCE Suggested Tool: EMS

- EMAS
- ISO 14001

PRES URCE Example of application

22.12.2009

EN

Official Journal of the European Union

L 342/1

I

(Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory)

REGULATIONS

REGULATION (EC) No 1221/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 25 November 2009

on the voluntary participation by organisations in a Community eco-management and audit scheme (EMAS), repealing Regulation (EC) No 761/2001 and Commission Decisions 2001/681/EC and 2006/193/EC

THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EURO-PEAN UNION,

Having regard to the Treaty establishing the European Community, and in particular Article 175(1) thereof.

Having regard to the proposal from the Commission,

Having regard to the opinion of the European Economic and Social Committee (1).

development of initiatives to encourage organisations to publish rigorous and independently verified environmental or sustainable development performance reports is regarded as necessary in this context.

(3) The Commission Communication of 30 April 2007 on the Mid-term review of the Sixth Community Environment Action Programme recognises that there is a need to improve the functioning of the voluntary instruments that

ANNEX I

ENVIRONMENTAL REVIEW

environmental review shall cover the following areas:

Identification of the applicable legal requirements relating to the environment.

In addition to the establishment of a list of applicable legal requirements, the organisation shall also indicate how evidence that it is complying with the different requirements can be provided.

Identification of all direct and indirect environmental aspects with a significant impact on the environment, qualified and quantified as appropriate and compiling a register of those identified as significant;

An organisation shall consider the following issues in assessing the significance of an environmental aspect:

- (i) potential to cause environmental harm;
- (ii) fragility of the local, regional or global environment,

PRES URCE Suggested Tool: Ecodesign

- Ecolizer http://www.ecodesignlink.be/en/ecolizer
- Life Cycle design manager

http://www.unep.fr/scp/lcinitiative/publications/training/lcmnavigator/index_c.html

PRES URCE Example of application

DIVINE	
Copper	02.03
Brass	02.04
Tin	02.05
Other	02.06

Plastics	
ABS	03.01
EVA	03.02
РА	03,03
PC	03.04
PE	03,05
PET	03.06
PMMA	03.07
PP	80.80
PS	03.09
PUR	03.10
PVC	03.11
SAN	03.12
Recycled plastics	03,13
Bioplastics	03.14
Composites	03.15
Rubber	03,16
Teflon	03.17

Bioplastics 0	3.14
	_
PRODUCTION	mPt/k
Modified starch/kg	275
Polylactide (PLA)/kg	312
PROCESSING	mPt
Revolving, milling, drilling/cm³	0,010
Extrusion, plastic film/kg	49
Extrusion, plastic pipes/kg	36 (
Hot element welding (30sec)/welding	2 (
Hot element welding (45min)/welding	155 (
Blow moulding/kg	123 (
Laser welding/m	0,46 (
Foaming/kg	60 (
Reaction injection moulding (RIM), large scale/kg	21 (
Rotation Forming/kg	106
Mirror-welding	dna
Injection moulding/kg	126 (
Ultrasonic welding (15kHz)/welding*	0,04 (
Ultrasonic welding (20kHz)/welding*	0,02
Ultrasonic welding (40kHz)/welding*	0,01 (
zoom=170,17,655 in/ka	dna

PRES URCE Biopolymer bags

PRES URCE Options.....

- Train employees ...
- Check feasibility of CIP plant ...
- Introduce EMS ...
- Check feasibility of bioplastics ...

PRES URCE Feasibility analysis

- Technical feasibility
- Ecological feasibility
- Economic feasibility

PRES URCE Technical feasibility

- Impact on quality
- Impact on productivity
- Impact on materials consumption
- Impact on energy consumption
- Maintainance
- Safety
- Flexibility
- Availability of space and infrastructure

PRES URCE Ecological feasibility

- Resource efficiency
- Shift of problems
- Emissions
- Health and safety
- Replacement of substances

• ...

PRES URCE Economic feasibility

- Payback period
- Consider
 - Obvious environmental cost
 - Cost of materials and energy
 - Personnel
 - Services
 - Investment and depreciation
 - maintenance

PRES URCE CIP plant

- 4 turbidity probes at 10.000 Euros
- 1 additional tank 15.000 Euros
- Pipes etc. 15.000 Euros
- Control unit 15.000 Euros
- Project costs, civil works, installation, startup
 65.000 Euros

PRES URCE Technical feasibility

Impact on quality

1

Impact on productivity

Impact on materials consumption

Impact on energy consumption

Maintainance

Safety

Flexibility

Availability of space and infrastructure

PRES URCE Technical feasibility

Resource efficiency

• Shift of problems

Emissions

Health and safety

Replacement of substances

n. r.

PRES URCE Economic feasibility

- Investment 120.000 €
- Operating cost savings 50% water (125.000 €)
- Maintenance low

PRES URCE Action plan

Activity	Responsible	Due date	Budget	Status
Upgrade of CIP plant	Ms Clean	October 2014	120.000 €	\odot

PRES URCE

Thank you for your active participation!

